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Abstract

The objective of this study was to investigate the variability of optimal power models in contrast to common
regression models within and between analytical methods, as well as the frequency of outlier rejection. This was done
by fitting the power model to calibration curve data using the minimum sum of squared residuals as a curve selection
criterion. The jacknife percent deviation was used for detecting outliers. The data were obtained from 2087 analytical
batches for 91 projects using various analytical techniques. The most frequent regression model varied between
analytical techniques while the median and interquartile range of the optimal powers were stable. Outlier rejection is
highest in GC and LCMS in which the Wagner (Quadratic, log-log) is the most frequent model. These results suggest
that the greatest source of variability in the ideal transformation may not be the analytical technique but other
within-lab sources. Outlying values may be due to these other sources of variability as suggested by the outlier
rejection profile. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

A Box-Cox-type [1] power transformation
method has been proposed as objective criteria to
fit and cross-validate bioanalytical calibration
curves [2–4]. For each set of Standard Curve data
(concentrations and responses), the suggested

transformation involves fitting a linear regression
between scaled responses raised to a certain power
and scaled concentrations raised to the same
power. Details of this are presented in [2] and can
be found in the original paper by Box and Cox
[1]. The optimal power is determined empirically
as the value that minimises the sum of scaled
squared residuals and will therefore depend on the
specific set of concentrations and responses. As
such, optimal powers will vary between analytical
techniques and between analyses within tech-
niques. The extent of this variability could have
implications on analytical technique stabiIity.
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In this article, two related questions pertinent
to the power model are addressed. The first of
these is whether for any specific dataset, the esti-
mated optimal power is related to the true vari-
ance weight of that data. Given this information,
the second question is what inferences can be
drawn regarding the variability, and more gener-
ally, the distribution of the optimal powers that
arise from experimental data between and within
analytical techniques. The first question is investi-
gated through simulations, in which the true vari-
ance weight is known and a relationship is sought
between this weight and the optimal power esti-
mated. The second question is investigated
through extensive data analysis of various analy-
ses across analytical techniques. The results are
tabulated and plotted.

2. Methodology

2.1. A re6iew of the power model

Given standard responses (Y) and concentra-
tions (X), the power model transforms Y and X
according to the transformation equation below
and fits a linear regression between the trans-
formed data according to the linear regression
equation also given below.

y (l)
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ly; l−1, if l"0

y; ln y, if l=0

(Transformation equation)

y (l)=a+bx (l)+e (Regression equation)

where l is a power value and y; is the geometric
mean of the responses. This power value can be
any real number. The optimal power for a given
dataset is determined as the value at which the
sum of scaled squared deviations is minimised.
This value is obtained by searching empirically
within some interval called the power search
range using the scaled residual sum of squares as

the selection criteria and an appropriate numeri-
cal algorithm with a preset precision. The numeri-
cal algorithm that was used (Appendix A) allows
one to start with as wide an interval as possible
and converges to the right value quickly with a
high precision.

After the optimal power is obtained, outlying
standards are flagged using the 20-20 Jack%Dev
Rule [2]. Using this rule, a standard is an outlier
if its jacknife percent deviation exceeds 20% and
omitted from the calibration curve if the total
number of outliers is, at most, 20% of the original
number of standards. The curve is then cross-vali-
dated using six (6) Quality Control (QC) samples,
with duplicate values at low, medium and high
concentrations. The curve is accepted if the back-
calculated values of the QCs pass the 20-15-10:
4/6 rule [5]. Thus, at least one of the percent
deviations of the QCs at low, medium, high con-
centration is less than or equal to 20, 15, and
10%, respectively, and at least 4 out of the 6 QCs
passed.

2.2. Simulation

The primary objective of the simulation was to
establish the relationship between observed opti-
mal powers from the proposed method and the
true variance weight, hence outlier detection or
cross-validation using QC samples was not per-
formed at this stage. As well, the relationship
between the currently used regression models and
the true underlying model was investigated. To do
this, standard curve data were simulated accord-
ing to the Simulation Al gorithm in the Appendix
B. The variance of the data was proportional to
ConcentrationWeight. Thus the term ‘‘true variance
weight’’ is a surrogate for the weight value in
ConcentrationWeight and the underlying variance
was controlled by simulating data with weight=0
(linear, un-weighted), 0.25, 0.5, 0.75, 1.00 (linear,
weighted 1/Concentration), 1.25, 1.50, 1.75, 2.00
(linear, weighted 1/Concentration2).

Once the data were simulated, the linear regres-
sion equation was fit to the data. The power
search range was (−16, 16) with a precision of
0.0001, thus the optimal power obtained was cor-
rect to four decimal places. The numerical al-
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Fig. 1. Curve selection density distribution using the power model and using the current method (L=Linear, Q=Quadratic,
LL=Log-Log, W=Wagner, 1=Weighted 1/X, 2=Weighted 1/X2).

gorithm used is given in Appendix A. For each set
of simulation parameters, and in particular, for
each true variance weight, 500 datasets were simu-
lated. For each of these datasets, an optimal
power and corresponding R2 value were obtained,
and the mean optimal power and R2 were tabu-
lated. As well, the current procedure was used to
select a regression model. The frequency distribu-
tion of regression models over the 500 cases was
tabulated. The results are given in Table 1 and
Fig. 1 and Fig. 2.

2.3. Data analysis

To analyse the real data, the complete power
model was fit, as reviewed in Section 2.1. Thus,
the optimal power was obtained, outlying stan-
dards flagged according to the 20-20 Jack%Dev

Rule and the curve cross-validated using the QC
acceptance rule.

A total of 2087 standard curve data from 91
projects from four different analytical techniques,
High Pressure Liquid Chromatography (HPLC),
Gas Chromatography (GC), Gas Chromatogra-
phy with Mass Spectometry (GCMS), Liquid
Chromatography with Mass Spectrometry
(LCMS), were analysed. The proposed power
method was used as well as the current method.
In the current method, a regression type was
selected from a set of eight (8), these being: Lin-
ear, Linear-Weighted 1/X, Linear-Weighted 1/X2,
Quadratic, Quadratic-Weighted 1/X, Quadratic-
Weighted l/X2, Log-Log and Wagner using the R2

as a selection criteria. The Log-Log model is a
linear regression between log(Response) and log-
(Concentration). The Wagner is a log-log with a
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Fig. 2. A perspective plot of the density distribution of optimal
power as a function of the true variance weight.

When the true model is an unweighted linear,
the most frequent regression model picked by the
current method using R2 (as a criterion) is Linear
with a frequency of 57%. However, the Quadratic
is also picked with a similar frequency of 42%.
Thus, unless a test for the significance of the
quadratic term is included in the model selection,
there will be ambiguity of choice between the two
models. To contrast this, the power model gives
optimal powers that appear normally distributed
around the true value of 1 (mean=0.96, 90%
confidence interval-(0.70,1.24)).

When the true model is a linear-weighted 1/X,
there is a distribution of choice between the re-
gression models with the Quadratic being the
most frequently selected and the Linear 1/X hav-
ing a similar selection frequency as the Linear.
The R2 choice is even more ambiguous in this
case. On the other hand, the optimal powers are
normally distributed around 0.47, with a 90%
confidence interval of (0.15, 0.72).

When the true model is a Linear weighted 1/X2,
the true regression is picked only 1% of the time.
The most frequent models in this case are the
Log-log and the Wagner. Again without a signifi-
cance test for the quadratic term, it is difflcult to
evaluate the advantage of the Wagner over the
Log-log. The optimal powers are normally dis-
tributed around the true value of 0 (mean=0.00,
90% confidence interval= (−0.34, 0.32)).

Table 1 summarises the mean R2 and the selec-
tion frequencies of the regression models and the
Power model for all the simulated true models. In
each case, the mean R2 from the power model is
at least as good as and often higher than that
from the corresponding regression model even

quadratic term. The results are given in Table 2
and Table 3 and Figs. 3–8.

3. Results

All the R2 values were adjusted for the number
of parameters in the regression.

3.1. Simulation results

Fig. 1 shows a histogram of the frequency of
selection of the eight (8) regression-models (using
the current method) when the underlying true
model is Linear Unweighted or Weighted 1/X or
1/X2. In this plot, L=Linear, L1=Linear-
Weighted 1/X, L2=Linear Weighted 1/X2, Q=
Quadratic, Q1=Quadratic-Weighted 1/X,
Q2=Quadratic-Weighted i 1/X2, LL=Log-Log
and W=Wagner. The density plot of the esti-
mated optimal powers is also given.

Table 2
A summary of the optimal powers in each analytical techniques

Projects Optimal PowerAnalytical technique Runs

1st Qu. IQRMedian Mean 3rd Qu.

0.2523 0.170.030.04GC −0.08386
0.05GCMS 0.2122 0.32577 −0.11 0.05

−0.09 0.08 0.07 0.27 0.3622HPLC 663
0.01SCIEX 0.1724 0.28461 −0.11 0.04

0.310.210.040.05−0.10208791Total



E. Kalahi Kimanani, J. La6igne / J. Pharm. Biomed. Anal. 16 (1998) 1107–11151112

Table 3
A summary of optimal powers in each group of runs in which the current method selected a given regression type

Regression Runs Optimal Power

Median Mean 3rd Qu. IQR1st Qu.

0.06 0.24Linear 1270 −0.11 0 350.07
0.180.03 0.31Quadratic 0.03107 −0.12

0.240.16Wagner 710 −0.08 0.04 0.02
0.05 0.31Total 0.042087 0.21−0.10

though the R2 is the selection criteria in the latter
procedure and not in the former.

A perspective plot of the probability density
plots of the optimal powers for all the underlying
true models is shown in Fig. 2. This plot demon-
strates firstly that the estimated optimal powers
are sharply normally dirtributed around the true
power and that this true power is distinct and
linearly related to the true variance weight. From
the values obtained the relationship between vari-
ance Weight and true Optimal Power is estimated
as

Weight=2.05× (0.96−Optimal power)

(Specificity equation)

The specificity of the power model is thus illus-
trated.

These results show that the power model is
highly specific and gives better fits than the cur-

rent model. They also show that the most fre-
quently selected regression model using R2 is not
necessarily the true model.

Fig. 4. Boxplot of optimal power models for each analyte in
the GC analytical technique. Horizontal lines correspond to
5th, 50th and 95th percentiles, the median is 0.044.

Fig. 3. Probability density distribution of optimal power in
each analytical technique.
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Fig. 5. Boxplot of optimal power models for each analyte in
the GCMS analytical technique. Horizontal lines correspond
to 5th, 50th and 95th percentiles, the median is 0.066.

4.2. Variability between analytes within
techiniques

Figs. 4–7 contains box plots of the analyte-
within analytical technique optimal powers. These
are all evenly scattered around the analytical tech-
nique-median values implying a stable variation
within each technique.

4.3. Variability between typical regression types

Table 3 is a summary of optimal powers in each
of the regression types that are typically used for
fitting calibration curves, such as Linear, Linear,
weighted 1/X or 1/X2, Quadratic with weights 1/X
or 1/X2, Log-log and Wagner. In this table, Lin-
ear (or Quadratic) includes weighted 1/X and

Fig. 6. Boxplot of optimal power models for each analyse in
the HPLC analytical technique. Horizontal lines correspond to
5th, 50th and 95th percentiles, the median is 0.09.

4. Data analysis results

4.1. Variability between analytical techniques

Table 2 gives a summary of the optimal power
in each of the analytical techniques. In all four
techniques, the medians and means of these values
are all around 0.1, when rounded to 1 dp (decimal
place). As well, the interquartile ranges are similar
(0.3, correct to 1dp). From the Specificity Equa-
tion above, this suggests that firstly the true vari-
ance weights from the data across the four
techniques vary normally and equally around 1/
X2. The suggested normal distribution is even
more apparent in Fig. 3 which shows the density
plots of the optimal powers from the four tech-
niques.
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Fig. 7. Boxplot of optimal power models for each analyse in
the LCMS analytical technique. Horizontal lines correspond
to 5th, 50th and 95th percentiles, the median is 0.051.

Fig. 8. Probability density distribution of optimal power by
regression Curve.

The currently observed variability in the choice of
regression may therefore be more due to other
sources of variability (for example the ambiguity
of R2) than the inherent true transformation.
Further, the apparent robustness of the proposed
power method implies that the power transforma-
tion can be used without imposing bounds on the
expected power value.

In conclusion, it has been demonstrated that
the power approach provides objective criteria for
fitting calibration curves. The robustness of the
power transformation method has been demon-
strated and suggests that the currently observed
variability between regression types is not neces-
sarily due to inherently different regressions but
may be due to other sources of variability between
and within analytical techniques. The power
model has also been demonstrated to be highly
specific to the underlying true variance weight
through the specificity equation.
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weighted 1/X2. The optimal power values in the
Quadratic and Wagner regression types are
slightly smaller suggesting a slightly bigger vari-
ance weight in the data due to these regression
types. However, all the median and interquartile
range seem to be stable around 0 again implying
an underlying true weight of 1/X2. Fig. 8 shows
density plots of the optimal powers in each of the
regression types and demonstrates more clearly
the stability of distribution.

5. Discussion of results and conclusion

The results indicate that the optimal power
transformation is robust between and within ana-
lytical techniques and between regression types.
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Appendix A. Power Search Algorithm

The algorithm which was used to find the value
of the optimal power is given below.
1. Set the pivot l0=0 and evaluate its sum of

scaled squared deviation, SSR0.
2. Set the search range and precision. This is

done by assigning a value to the parameter
step and setting the maximum number of iter-
ations, n. Step=8 and n=16 coresponds to a
range of (−16,16) and precision of 0.0001.

3. Set l−1=l0-Step and l1=l0+Step.
4. Evaluate sum of scaled squared deviation for

l−1, and l1 (SSR−1 and SSR1).
5. Set l0 and SSR0 to be the one which minimizes

the sum of scaled squared deviations from
l−1, l0 and l1.

6. If i=n return l0 and SSR0, the optimal power
and its corresponding sum of scaled squared
deviation.

7. Set i= i+1, Step=Step/2 and goto 3.

Appendix B. Simulation algorithm

In this section the algorithm which was used to
generate values of drug concentration and re-
sponses is presented.

B.1. Simulate Concentration

� Set a maximum concentration value MaxConc
as a uniform random number between 100 and
1000 (this can be scaled up or down)

� Choose 10 concentration values as follows: (1,
1, 2, 5, 15, 50, 75, 90, 100, and 100%) of
MaxConc. The LLOQ as well as the maximum
value are duplicated as is often done in prac-
tice.

B.2. Simulate Regression Slope

� Generate the maximum response, MaxResp,
from a log Normal distribution such that mean
(MaxResp)=1 and probability of MaxResp\
4 is 0.001. To do this, a log-normal distribution
with mean= −0.1186 and S.D.=0.4870 was
used.

� Generate Intercept as a uniform variate be-
tween −0.01 and 0.01.

� Then the slope is given by:

Slope= (MaxResp−Intercept)/MaxConc

B.3. Simulate Responses

Response=Intercept+Slope×Concentration

+ (Concentration/10)wgt×s2

where s2 is a random uniform variate between
0.0001 and 0.0003 and the simulated weight is
wgt.
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